improper encryption - ορισμός. Τι είναι το improper encryption
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι improper encryption - ορισμός

LIMIT OF A DEFINITE INTEGRAL WITH AS ONE OR BOTH LIMITS APPROACH INFINITY OR VALUES AT WHICH THE INTEGRAND IS UNDEFINED
Improper Riemann integral; Improper integrals; Improper Integrals
  • The improper integral<br/><math>\int_{0}^{\infty} \frac{dx}{(x+1)\sqrt{x}} = \pi</math><br/> has unbounded intervals for both domain and range.
  • The improper integral<br/><math>\int_{-1}^{1} \frac{dx}{\sqrt[3]{x^2}} = 6</math><br/> converges, since both left and right limits exist, though the integrand is unbounded near an interior point.
  • An improper Riemann integral of the second kind. The integral may fail to exist because of a [[vertical asymptote]] in the function.
  • Figure 1
  • An improper integral of the first kind. The integral may need to be defined on an unbounded domain.
  • Figure 2

Deniable encryption         
ENCRYPTION TECHNIQUE
Deniable Encryption
In cryptography and steganography, plausibly deniable encryption describes encryption techniques where the existence of an encrypted file or message is deniable in the sense that an adversary cannot prove that the plaintext data exists.See http://www.
Identity-based encryption         
  • ID Based Encryption: Offline and Online Steps
Identity based encryption; ID-based encryption; Identity-Based Encryption; Hierarchical identity-based encryption
ID-based encryption, or identity-based encryption (IBE), is an important primitive of ID-based cryptography. As such it is a type of public-key encryption in which the public key of a user is some unique information about the identity of the user (e.
Filesystem-level encryption         
FORM OF DISK ENCRYPTION WHERE INDIVIDUAL FILES OR DIRECTORIES ARE ENCRYPTED BY THE FILE SYSTEM ITSELF
Transparent file encryption; File system-level encryption; File system level encryption; Filesystem level encryption; Cyptographic filesystem; Cyptographic filesystems; Cyptographic file systems; Cyptographic file system; Cryptographic filesystem; Cryptographic filesystems; Cryptographic file systems; Cryptographic file system; File or folder encryption; File/folder encryption; File and folder encryption; Folder encryption; File-level encryption; Folder-level encryption
Filesystem-level encryption, often called file-based encryption, FBE, or file/folder encryption, is a form of disk encryption where individual files or directories are encrypted by the file system itself.

Βικιπαίδεια

Improper integral

In mathematical analysis, an improper integral is the limit of a definite integral as an endpoint of the interval(s) of integration approaches either a specified real number or positive or negative infinity; or in some instances as both endpoints approach limits. Such an integral is often written symbolically just like a standard definite integral, in some cases with infinity as a limit of integration interval(s).

Specifically, an improper integral is a limit of the form:

lim b a b f ( x ) d x , lim a a b f ( x ) d x {\displaystyle \lim _{b\to \infty }\int _{a}^{b}f(x)\,dx,\quad \lim _{a\to -\infty }\int _{a}^{b}f(x)\,dx}

or

lim c b a c f ( x )   d x , lim c a + c b f ( x )   d x {\displaystyle \lim _{c\to b^{-}}\int _{a}^{c}f(x)\ dx,\quad \lim _{c\to a^{+}}\int _{c}^{b}f(x)\ dx}

where in each case one takes a limit in one of integration endpoints (Apostol 1967, §10.23). Of course, limits in both endpoints are also possible and this case is also considered as an improper integral.

By abuse of notation, improper integrals are often written symbolically just like standard definite integrals, perhaps with infinity among the limits of integration interval(s). When the definite integral exists (in the sense of either the Riemann integral or the more powerful Lebesgue integral), this ambiguity is resolved as both the proper and improper integral will coincide in value.

The purpose of using improper integrals is that one is often able to compute values for improper integrals, even when the function is not integrable in the conventional sense (as a Riemann integral, for instance) because of a singularity in the function as an integrand or because one of the bounds of integration is infinite.